UNIVERSITE DE BOURGOGNE

U.F.R. Sciences et Techniques Filière : Licence 3^{ème} année Chimie option C

Année 2010-2011 24 mai 2011

Session: 1

EPREUVE: Chimie analytique Méthodes chimiques de dosage

Durée: 02 h 00 - (calculatrice autorisée)

TITRAGE D'UNE SOLUTION D'EDTA

A) Titrage acido-basique

Considérons le titrage de 100 mL d'une solution du sel disodique de l'acide éthylènediaminetétraacétique ou EDTA (Na₂H₂Y), de concentration 10⁻² mol.L⁻¹, par une solution de soude 1 mol.L⁻¹ (concentration suffisamment élevée pour que le dilution soit considérée négligeable). La courbe théorique du titrage, montrant la variation du pH en fonction du volume v de réactif titrant ajouté, est représentée en annexe sur la figure 1, de même que les courbes de variation du pourcentage des différentes formes significatives de l'EDTA.

- 1) Représenter la formule développée plane de l'EDTA.
- 2) Expliquer comment retrouver graphiquement, à partir de la figure 1, les valeurs des pKa des couples H₂Y²-/HY³⁻ et HY³⁻/Y⁴⁻.
- 3) Déterminer et justifier par le calcul le pH et la composition de la solution initiale.
- 4) Indiquer les réactions de titrage successivement mises en jeu et calculer le volume de réactif correspondant à chaque équivalence.
- 5) Déterminer par le calcul le pH aux points : v = 0.5; 1; 1,5; 2; 2,5 mL (on pourra s'aider de la figure 1 pour justifier les hypothèses avancées).
- 6) Que dire de la quantitativité de la réaction de titrage au niveau de la 2^{ème} équivalence? Justifier sur la base de l'examen de la figure 1 ou par le calcul.
- 7) On détermine la $1^{\text{ère}}$ équivalence à l'aide d'un indicateur coloré acido-basique. Quel en serait le p K_a idéal ? Dans ce cas idéal, si le domaine de virage s'étend sur 1,6 unités de pH, préciser par le calcul l'intervalle de volume v correspondant. En déduire l'erreur de titrage et la qualifier.

B) Titrage complexométrique

Une autre méthode d'étalonnage de la solution du sel disodique de l'EDTA utilise le titrage d'une solution étalon d'un cation métallique, Cd²⁺ par exemple.

La figure 2 représente les courbes de variation de pCd et du pourcentage des formes libre et complexé du cadmium au cours du titrage par Na₂H₂Y 0,1 mol.L⁻¹ de 10 mL d'une solution de Cd²⁺ 10⁻² mol.L⁻¹ tamponnée à pH = 4.7 (tampon acétique).

- 1) Définir la constante de stabilité conditionnelle du complexe CdY²⁻ et préciser sa valeur dans les conditions du titrage. Cette valeur est-elle satisfaisante du point de vue de la qualité du dosage ?
- 2) Retrouver par le calcul la valeur du pCd à l'équivalence.
- 3) On envisage pour ce dosage l'emploi de l'orangé de xylénol comme indicateur coloré.

Expliquer le changement de couleur à l'équivalence.

Si le domaine de virage s'étend sur 1,6 unités de pCd, calculer l'intervalle de volume de réactif titrant sur lequel le virage est observé. En déduire l'erreur de titrage.

DONNÉES :

a. Couples acido-basiques de l'EDTA:

$$H_4Y/H_3Y^ pK_{a1} = 2,0$$
 H_3Y^-/H_2Y^{2-} $pK_{a2} = 2,7$ H_2Y^{2-}/HY^{3-} $pK_{a3} = 6,2$ HY^{3-}/Y^{4-} $pK_{a4} = 10,3$

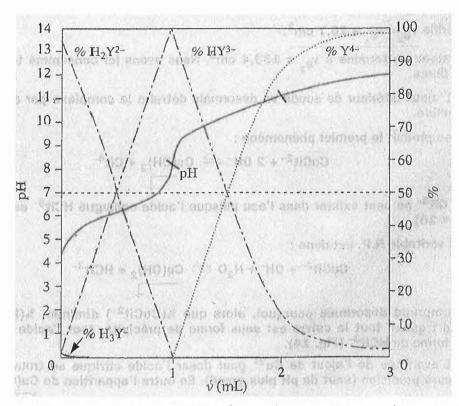
b. Constante de formation du complexe CdY^{2-} :

$$K_F = \frac{[CdY^{2-}]}{[Cd^{2+}][Y^{4-}]}$$
 log $K_F = 16,6$

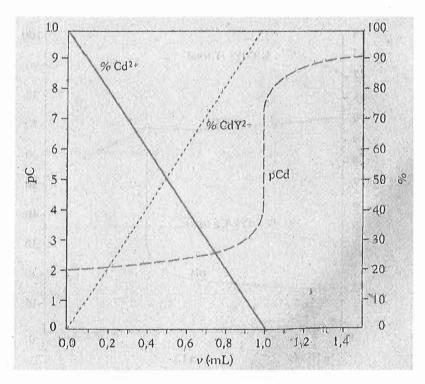
c. Coefficient de distribution de l'espèce Y⁴-

A pH = 4,7,
$$\alpha_4 = 1,43.10^{-8}$$

d. Caractéristiques de l'indicateur coloré orangé de xylénol


Celui-ci posséde six acidités, avec associées à chaque forme acido-basique une couleur et une constante de dissociation acido-basique (pK_a):

Forme acido-basique	H ₆ I	H ₅ I	H_4I	H ₃ I	H_2I	HI
Couleur		jaune		jaune	rouge	rouge
pKa		2,6	3,2	6,4	10,4	12,3


Couleur du complexe $Cd^{2+}/orangé$ de xylénol : pourpre

Constante de formation du complexe (mettant en jeu la forme totalement déprotonnée de l'indicateur) :

$$K_{F,I} = \frac{[CdI]}{[Cd^2+][I]}$$
 log $K_{F,I} = 19,2$

Fig. 1. Titrage de 100 mL de Na₂H₂Y 10⁻² mol.L⁻¹ par NaOH 1 mol.L⁻¹ : courbes de variation du pH et des pourcentages des différentes formes de l'EDTA en fonction du volume de soude ajouté.

Fig. 2. Titrage de 10 mL d'une solution de Cd^{2+} 10^{-2} mol. L^{-1} , en milieu tamponné à pH = 4,7, par une solution de Na_2H_2Y 10^{-1} mol. L^{-1} : courbes de variation du pCd = $-log [Cd^{2+}]$ et des pourcentages des formes de cadmium en fonction du volume d'EDTA ajouté.

SOLUTIONS NUMÉRIQUES

A) Titrage acido-basique

2) Les pka sont trouvés à l'intersection des courbes de reportition des deux espèces du même couple.

On obtient:

$$H_{3} / \lambda_{1} = b / a^{3} = 0.5$$

3)
$$pH = 4.5$$

 $[H_3O^{\dagger}] = 3.16.10^{-5} \text{ mol.} L^{-1}; [OH^{\dagger}] = 3.16.10^{-10} \text{ mol.} L^{-1}; [H_2Y^2] = 10^{-2} \text{ mol.} L^{-1}$
 $[H_3Y^{\dagger}] = [HY^3] = 8.9.10^{-5} \text{ mol.} L^{-1}$

4). Réaction de closage :

5)

$$\frac{v(mL)}{pH}$$
 0,5 1 1,5 2 2,5
 $\frac{1}{pH}$ 6,2 8,85 10,3 11,1 11,7

- B) Titrage complexométrique
- 1) Constante de stabilité conclitionnelle de CdY^2 $K'_F = \frac{[CdY^2]}{[Cd^2]C_F} = K_FX_{LF}$ $K'_F = 5,7.10^8$ Valeur satisfaisante cur $\sum a \cdot 10^8$ (réaction de titrage quantitative)
- 2) A l'équivalence, pCd = 5,4
- 3) Changement de couleur = passage du complene Clet/orangé de xylèno!
 (couleur pourpre) à l'inclicatain libre (forme acido-basique stable: HJI)
 - Virage pour un volume de titrant compris entre 996 et 1 ml Erran de titrage correspondante e 4/