Spectrométrie de masse

Pr. Franck DENAT
ICMUB UMR 5260
9, Av. Alain Savary
BP 47870 21078 Dijon
Franck.Denat@u-bourgogne.fr

Spectrométrie de masse

I. Généralités.

Technique analytique permettant de séparer les atomes ou les molécules sous forme d'ions suivant leur masse

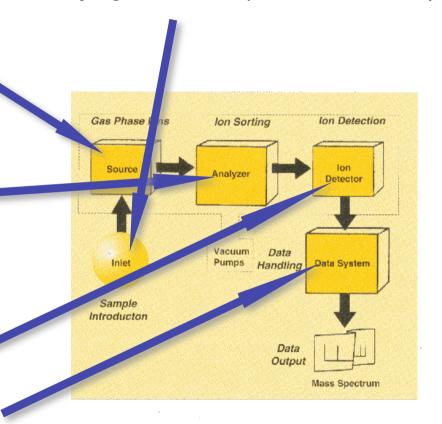
Intérêts:

- détermination de la masse moléculaire (spectromètres haute résolution → masse exacte →formule brute)
 - identification de structures (bibliothèques de spectres, fragmentation)
 - dosage (ICP/MS)

Applications:

- chimie organique et pharmaceutique
- biochimie (peptides, protéines,...)
- médical : analyses, détection
- géologie, archéologie
- environnement : qualité de l'air, de l'eau,...

II. Principe.


- Ionisation du composé sous forme gazeuse (source)

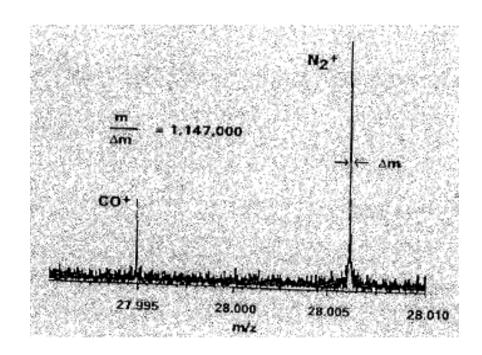
- Accélération puis séparation des ions (analyseur), étude des trajectoires des ions sous l'action de É et/ou B, dépend de m/z Sous vide poussé (10⁻⁴ Pa = 10⁻⁹ bar) : éviter les collisions

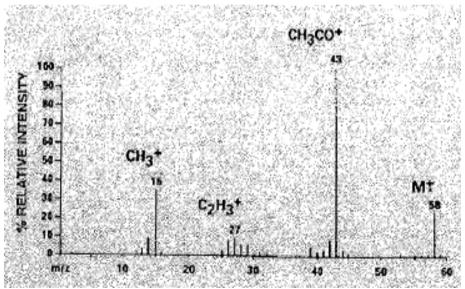
- Détecteur : "comptage" des ions de ≠ m/z

- Traitement informatique → spectre de masse

- Introduction de l'échantillon : directe, couplage chromato (GC/MS, HPLC/MS)

Les performances (résolution, limite en masse, sensibilité) de l'appareil dépendent : du mode d'ionisation, de la nature de l'analyseur, du détecteur

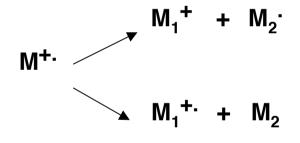

III. Spectre de masse.


Spectre continu : pics plus ou moins larges selon la résolution de l'instrument :

 $R = m/\Delta m$ (haute résolution \rightarrow 10 000 000)

ex : spectre HR de CO et N₂ :

Spectre-barres (spectre de fragmentation)
ex : spectre de l'acétone (impact
électronique IE)

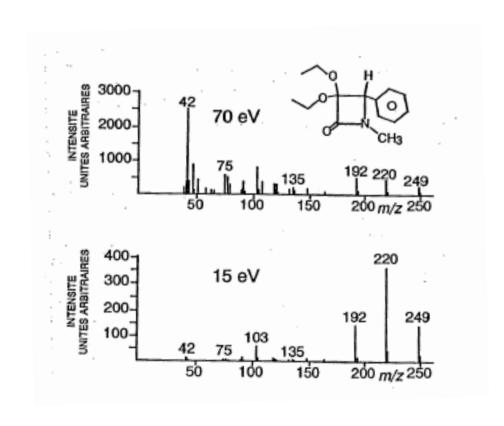


IV. Ionisation.

IV.1. Par impact électronique (IE)

$$M + e^{-} \rightarrow M^{+} + 2 e^{-}$$

e⁻ extrait préférentiellement : 1) e⁻ n (doublet sur O, N, S) 2) e⁻ π 3) e⁻ σ Si E suffisante (E standard = 70 eV) \rightarrow fragmentation de l'ion moléculaire M⁺·


 ${\rm M_1}^+$ et ${\rm M_1}^+$. (ions fragments) visibles sur le spectre, ${\rm M_2}$ et ${\rm M_2}^+$: espèces non chargées, non détectées

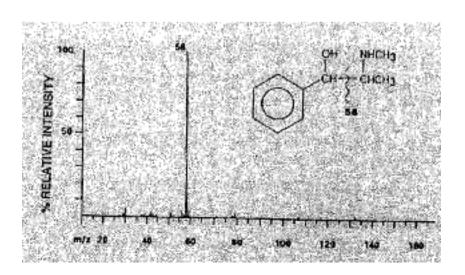
Règle de l'azote :

ions contenant 0, 2,... atomes N : M_1^{+} , M_1^{+} m/z pair, M_1^{+} m/z impair

ions contenant 1, 3,... atomes N : M⁺⁻ , M₁⁺⁻ m/z impair, M₁⁺ m/z pair

- - Spectres reproductibles (E = 70 eV) : identification / bibliothèque
 - Fragmentation → informations structurales
- ⊗ Fragmentation → ion moléculaire M⁺· parfois non visible : possibilité
 d'enregistrer le spectre avec une E plus faible

IV.2. Par ionisation chimique (CI)


Gaz réactif G (CH₄, NH₃, isobutane,...) ionisé par IE \rightarrow G⁺· puis réactions 2aires \rightarrow formation d'ions dont GH⁺ qui vont entrer en collision avec M (ratio G/M \approx 100)

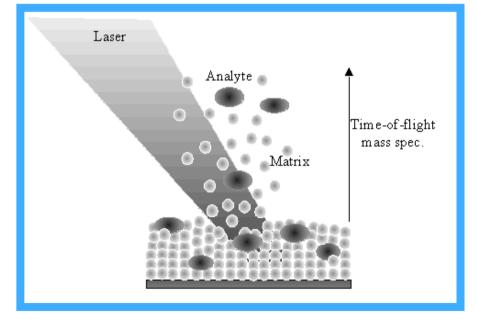
$$M + GH^+ \rightarrow MH^+ + G$$

→ Formation de l'ion pseudomoléculaire MH^+ à m/z = M + 1 Possibilité d'adduits , ex $MC_2H_5^+$ (M + 29) ou MNH_4^+ (M + 18)

- **○** Peu de fragmentation → masse moléculaire via ion pseudomoléculaire
- Pas de comparaison / bibliothèques

Spectre de l'éphédrine : El (70 eV)

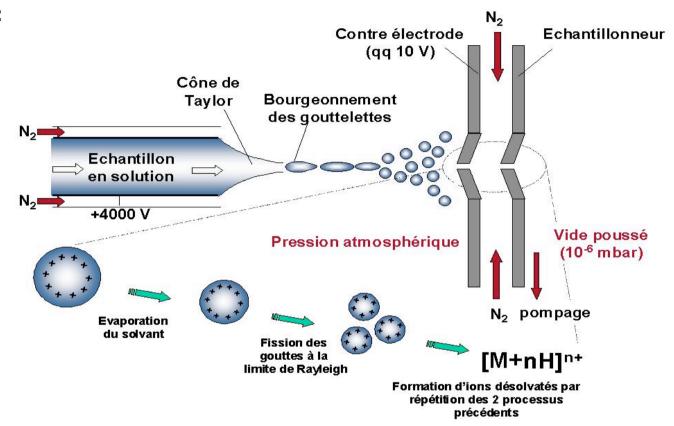
CI (CH₄)



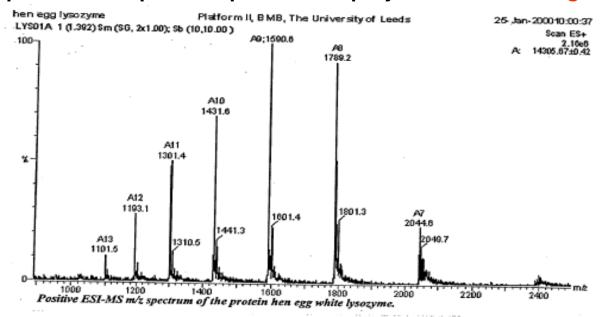
IE et Cl adaptées aux molécules organiques relativement volatiles → 1000 Da Molécules de haut poids moléculaire (peptides, protéines,...) ???

IV.3. MALDI (Matrix Assisted Laser Desorption Ionisation)

Échantillon mélangé à une matrice (ratio 1/50 000) absorbant à λ laser (337 nm pour N₂) \rightarrow transfert de H⁺ entre matrice photoexcitée et échantillon \rightarrow désorption


des ions.

- - Ionisation douce → pas de fragmentation
 - M très élevée (→ 500 000 Da)
- **8** Pas d'information structurale


IV.4. Electrospray (ESI) (souvent couplé à HPLC)

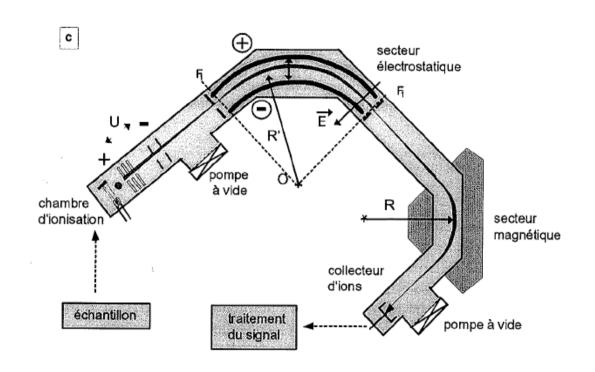
Principe:

- Electrospray produit entre un capillaire métallique et contre-électrode → formation de gouttelettes chargées,
- Evaporation du solvant par N_2 chaud \rightarrow diminution taille des gouttes \rightarrow explosion Coulombienne \rightarrow entrée dans le SM.

Exemple de spectre d'une protéine par électrospray : ions multichargés

- - ionisation douce → pas de fragmentation
 - P atmosphérique → adaptée à HPLC
 - M très élevé (→ 200 000 Da), molécules polaires, peu stables
- 8 Pas d'information structurale

IV.5. ICP (Inductively Coupled Plasma)

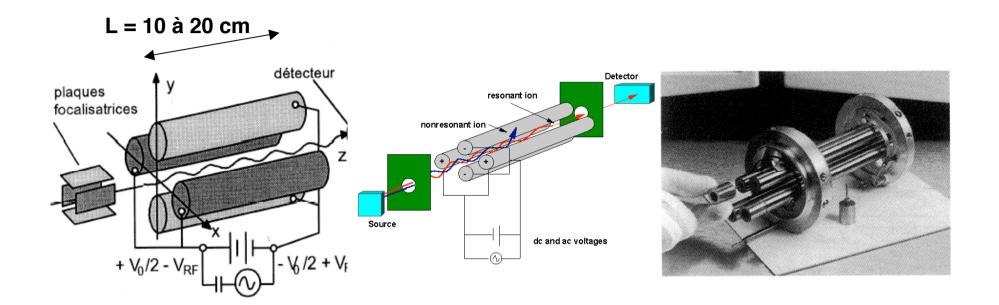

Ionisation dans une torche plasma (Ar) (T →10000 K) : analyse des éléments

- adaptée aux composés inorganiques, organométalliques
 - très grande sensibilité : analyse ultratraces (ppt, ppq)
- 😕 coût

V. Analyseurs

V.1. Electromagnétique (EB)

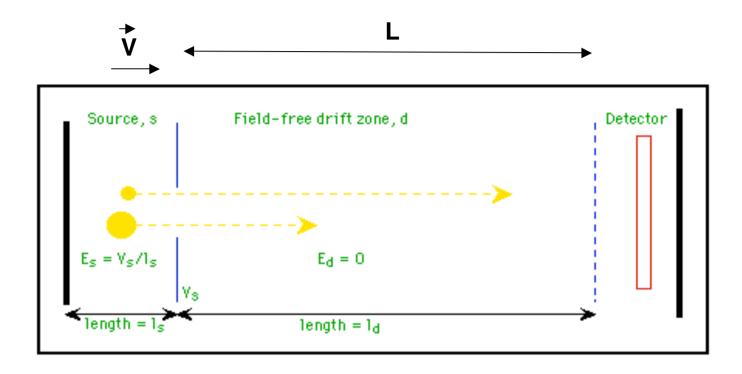
Analyseur à double focalisation (en direction et en énergie)



$$m/z = \frac{R^2B^2}{2U}$$

En g^{al}, on maintient U constant et on fait varier B

- **○** haute résolution → masse exacte
 - adapté à divers modes d'ionisation
- 8 coût, limité en masse


V.2. Quadripôle

En gal, on maintient V_0 et V_{RF} constants et on fait varier v_{RF}

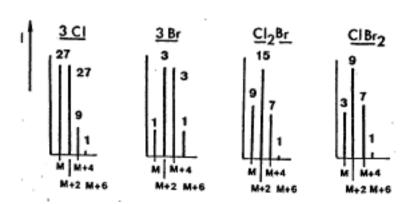
- simple, peu coûteux, peu encombrant
 - adapté au couplage GC → détecteur GC/MS
- **8** faible résolution (500)
 - limité en masse (→ 2000)

V.3. Analyseur à temps de vol (TOF: Time of Flight)

$$m/z = \frac{2Vt^2}{L^2}$$

- - pas de limitation en masse en théorie (→ 300 000 Da)
 - grande sensibilité
- 8 résolution moyenne (5000)

Différents isotopes des principaux éléments rencontrés en chimie


Elément	Masse molaire atomique (g.mol¹)	Nucléide (%)	Masse (Da)
Hydrogène	1,00794	¹H (99,985)	1,007825
		² H (0,015)	2,014050
Carbone	12,01115	12C (98,90)	12,000000
		13C (1,10)	13,003355
Azote	14,00674	¹⁴ N (99,63)	14,003074
		¹⁵ N (0,37)	15,000108
Oxygène	15,99940	¹⁶ O (99,76)	15,994915
		17O (0,04)	16,999311
		^H O (0,20)	17,999160
Fluor	18,99840	¹⁹ F (100)	18,998403
Soufre		32S (95,02)	31,972070
	32,066	³³ S (0,75)	32,971456
		¹⁴ S (4,21)	33,967866
Chlore	35,45274	35Cl (75,77)	34,968852
		37Cl (24,23)	36,965903

http://www.cchem.berkeley.edu/Table/

Molécules contenant C, H, N, O:

$$(M+1)/M = 1.1 \times n_C + 0.36 \times n_N$$

$$(M+2)/M = [1,12 \times n_C (n_C -1)]/200 + 0,20 \times n_O$$

Exemples d'amas isotopiques

Gas ChromatographyMass Spectrometry